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Abstract Intravital microscopy has revolutionized live- cell imaging by allowing the study of 
spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by 
this technology has limited the development of effective computational tools to identify and quantify 
cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue 
homeostasis and host defense. Live- cell imaging enabled the study of apoptosis at the cellular level, 
enhancing our understanding of its spatial–temporal regulation. However, at present, no computa-
tional method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this 
limitation, we developed ADeS, a deep learning- based apoptosis detection system that employs the 
principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 
apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% 
and outperforming state- of- the- art solutions. ADeS is the first method capable of detecting the loca-
tion and duration of multiple apoptotic events in full microscopy timelapses, surpassing human perfor-
mance in the same task. We demonstrated the effectiveness and robustness of ADeS across various 
imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell 
survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, 
treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool 
for the accurate detection and quantification of apoptosis in live- cell imaging and, in particular, intrav-
ital microscopy data, providing insights into the complex spatial–temporal regulation of this process.
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This valuable study advances our understanding of spatial–temporal cell dynamics both in vivo and 
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Introduction
In the last two decades, intravital microscopy (IVM) has revolutionized live- cell imaging by enabling 
microscopy acquisitions in situ across different organs, making it one of the most accurate models to 
describe cellular activities within a living host (Sumen et al., 2004). In particular, multiphoton intravital 
microscopy (MP- IVM) generates in- depth 3D data that encompass multiple channels for up to several 
hours of acquisition (x,y,z+t) (Helmchen and Denk, 2005; Rocheleau and Piston, 2003; Secklehner 
et al., 2017), thus providing unprecedented insights into cellular dynamics and interactions (Pizzagalli 
et al., 2019). The resulting MP- IVM data stream is a complex and invaluable source of information, 
contributing to enhance our understanding of several fundamental processes (Beltman et al., 2009; 
Sumen et al., 2004).

Apoptosis is a form of regulated cell death (D’Arcy, 2019; Tang et al., 2019) that plays a crucial 
role in several biological functions, including tissue homeostasis, host protection, and immune 
response (Opferman, 2008). This process relies on the proteolytic activation of caspase- 3- like effec-
tors (Shalini et al., 2015), which yields successive morphological changes that include cell shrinkage, 
chromatin condensation, DNA fragmentation, membrane blebbing (Elmore, 2007; Galluzzi et al., 
2018; Saraste and Pulkki, 2000), and finally, apoptotic bodies formation (Coleman et al., 2001). Due 
to its crucial role, dysregulations of apoptosis can lead to severe pathological conditions, including 
chronic inflammatory diseases and cancer (Fesik, 2005; Hotchkiss and Nicholson, 2006). Conse-
quently, precise tools to identify and quantify apoptosis in different tissues are pivotal to gain insights 
on this mechanism and its implications at the organism level.

Traditional techniques to quantify apoptosis rely on cellular staining on fixed cultures and tissues 
(Atale et al., 2014; Kyrylkova et al., 2012; Loo, 2011; Sun et al., 2008; Vermes et al., 1995) or flow 
cytometry (Darzynkiewicz et al., 2008; Vermes et al., 1995). However, these methods do not allow 
the temporal characterization of the apoptotic process. Moreover, they potentially introduce artifacts 
caused by sample fixation (Schnell et al., 2012). Live- cell imaging can overcome these limitations by 
unraveling the dynamic aspects of apoptosis with the aid of fluorescent reporters, such as Annexin 
staining (Atale et al., 2014) or the activation of caspases (Takemoto et al., 2003). However, the use 
of fluorescent probes in vivo could potentially interfere with physiological functions or lead to cell 
toxicity (Jensen, 2012). For these reasons, probe- free detection of apoptosis represents a critical 
advancement in the field of cell death.

Computational methods could address this need by automatically detecting individual apoptotic 
cells with high spatial and temporal accuracy. In this matter, deep learning (DL) and activity recognition 
(AR) could provide a playground for the classification and detection of apoptosis based on morpho-
logical features (Poppe, 2010). Accordingly, recent studies showed promising results regarding the 
classification of static frames (Kranich et  al., 2020; Verduijn et  al., 2021) or timelapses (Mobiny 
et al., 2020) portraying single apoptotic cells. However, none of the available methods can be applied 
for the detection of apoptosis in microscopy movies depicting multiple cells. Therefore, we developed 
ADeS, a novel apoptosis detection system that employs a transformer DL architecture and computes 
the location and duration of multiple apoptotic events in live- cell imaging. Here, we show that our 
architecture outperforms state- of- the- art DL techniques and efficiently detects apoptotic events in a 
broad range of imaging modalities, cellular staining, and cell types.

Results
An in vitro and in vivo live-cell imaging data
Curated and high- quality datasets containing numerous instances of training samples are critical for 
developing data- hungry methods such as supervised DL algorithms (Adadi, 2021). To this end, we 
generated two distinct datasets encompassing epithelial cells (in vitro) and leukocytes (in vivo) under-
going apoptotic cell death. In addition, the two datasets include different imaging modalities (confocal 
and intravital two- photon), biological models, and training- set dimensionalities. A meaningful differ-
ence between the datasets pertains to the staining methods and the morphological hallmarks, which 
define the apoptotic process in both models. In the in vitro model, the expression of nuclear markers 
allowed us to observe apoptotic features such as chromatin condensation and nuclear shrinkage 
(Saraste and Pulkki, 2000), whereas in the in vivo model, cytoplasmic and membrane staining high-
lighted morphological changes such as membrane blebbing and the formation of apoptotic bodies 

https://doi.org/10.7554/eLife.90502
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(Saraste and Pulkki, 2000). Accordingly, we have manually annotated these datasets based on the 
presence of the specific hallmarks, ensuring that each dataset includes two class labels depicting 
either apoptotic or nonapoptotic cells. These two datasets constitute the first step toward creating, 
testing, and validating our proposed apoptosis detection routine.

To generate the in vitro dataset, we used epithelial cells because, among the human tissues, they 
have the highest cellular turnover driven by apoptosis (van der Flier and Clevers, 2009). Never-
theless, from the bioimaging perspective, the epithelium is a densely packed tissue with almost no 
extracellular matrix, making it extremely challenging to analyze. As such, in epithelial research, there 
is a pressing need for computational tools to identify apoptotic events automatically. To this end, we 
imaged and annotated the human mammary epithelial cells expressing a nuclear fluorescent marker 
(Figure 1A), obtaining 13,120 apoptotic nuclei and 301,630 nonapoptotic nuclei image sequences 
(Figure 1B and C, Figure 1—figure supplement 1A). Nuclear shrinkage and chromatin condensa-
tion, two of the most prototypical hallmarks of apoptosis (Figure 1C), formed our criteria for manual 
annotation. We confirmed that nonapoptotic nuclei had constant area and chromatin density from the 
generated timelapses. In contrast, apoptotic nuclei underwent a decrease in area and an increase in 
chromatin condensation (Figure 1D). The resulting dataset captured the heterogeneity of apoptotic 
cells in epithelial tissue, including early nuclear fragmentation, a rapid shift along the x and y axes, 
and extrusion through the z dimension (Figure  1—figure supplement 1B and C). Moreover, our 
dataset incorporates the typical difficulties of automatically annotating apoptotic events from live 
microscopy of a densely packed tissue (Figure  1—figure supplement 1D) with the accumulation 
of apoptotic bodies (Figure 1—figure supplement 1E) and across multiple microscope hardware 
settings (Figure 1—figure supplement 1F).

To generate an in vivo dataset, we focused on polymorphonucleated leukocytes (neutrophils and 
eosinophils) that expressed a fluorescent marker. In these early immune responders, apoptosis is a 
crucial process that orchestrates their disposal, consequently determining the duration of the inflam-
mation (Fox et al., 2010). To acquire instances of apoptotic leukocytes, we performed MP- IVM in 
anesthetized mice by surgically exposing either the spleen or the popliteal lymph node (Figure 1E 
and F). The resulting timelapses (Figure 1G) provided 3D imaging data encompassing consecutive 
multifocal planes (3D) and multiple imaging channels. Then, from the generated MP- IVM movies, 
we generated cropped sequences of fixed size that tracked apoptotic cells for the duration of their 
morphological changes (59 × 59 pixels + time; Figure 1H and I). This procedure was applied to 30 
MP- IVM movies, generating 120 apoptotic sequences (Figure 1—figure supplement 1G). Further-
more, we annotated random instances of nonapoptotic events, generating 535 cropped samples. To 
characterize the heterogeneity of the movies, we manually quantified the cell number per field of view 
(87 ± 76), the shortest distance between cells (21.2 μM ± 15.4), and the signal- to- noise ratio (SNR) 
(8.9 ± 3.6; Figure 1—figure supplement 1H–J). We assumed that the morphological changes associ-
ated with apoptosis occur within defined time windows for detection purposes. Hence, we estimated 
the median duration of the morphological changes corresponding to eight frames (Figure 1—figure 
supplement 1K and L, respectively). In addition, to classify apoptotic cells within defined spatial 
regions, we considered them to be nonmotile. This assumption was confirmed when we found that 
apoptotic cells, despite having a longer track length due to passive transport, exhibited a speed that 
was not significantly different from those of arrested cells (Figure 1—figure supplement 1M).

ADeS: A pipeline for apoptosis detection
Detecting apoptosis in live- cell imaging is a two- step process involving the correct detection of apop-
totic cells in the movies (x,y) and the correct estimation of the apoptotic duration (t). To fulfill these 
requirements, we designed ADeS as a set of independent modules assigned to distinct computa-
tional tasks (Figure 2). As an input, ADeS receives a 2D representation of the microscopy acquisi-
tions (Figure 2A) obtained from the normalization of 2D raw data or the maximum projection of 3D 
data (Shi, 2015). This processing step ensures the standardization of the input, which might differ 
in bit depth or acquisition volume. After that, we employ a selective search algorithm (Girshick, 
2015; Uijlings et al., 2013) to compute regions of interest (ROIs) that might contain apoptotic cells 
(Figure 2B). For each ROI at time (t), ADeS extracts a temporal sequence of n frames ranging from t 
– n/2 to t + n/2 (Figure 2C). The resulting ROI sequence is standardized in length and passed to a DL 
classifier (Figure 3), which determines whether it is apoptotic or nonapoptotic. Finally, each apoptotic 
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Figure 1. Generation of in vitro and in vivo live- cell imaging data. (A) Micrographs depicting mammary epithelial MCF10A cells transduced with H2B- 
miRFP703 marker and grown to form a confluent monolayer. The monolayer was acquired with a fluorescence microscope for several hours with 1, 2, or 
5 min time resolution. (B) The centroid (x, y) and the time (t) of apoptotic events were annotated manually based on morphological features associated 
with apoptosis. Nonapoptotic cells were identified by automatic segmentation of nuclei. (C) Image timelapses showing a prototypical apoptotic event 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.90502
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sequence is depicted as a set of bounding boxes and associated probabilities (Figure 2D) generated 
from the predicted trajectories (x, y, t, ID; Figure 2E). From this readout, ADeS can generate a heatmap 
representing the likelihood of apoptotic events throughout a movie (Figure 2F, left), together with a 
cumulative sum of the predicted cell deaths (Figure 2F, right).

For the classification of apoptotic sequences, we proposed a Conv- Transformer architecture 
(Figure 3). In the proposed architecture, a convolutional module extracts the spatial features of the 
apoptotic cells, whereas attention- based blocks evaluate the temporal relationship between consec-
utive frames.

Training and deployment in vitro
As previously described, ADeS is a multiple- block pipeline, and its application and validation to detect 
apoptotic cells in live- cell imaging follow two main steps: (1) the training of the DL classifier with a 
target dataset and (2) its deployment on live- cell imaging acquisitions. As opposed to in vivo acqui-
sitions, in vitro timelapses are more homogeneous in their content and quality, thus representing the 

(upper panels), with nuclear shrinkage and chromatin condensation, and a nonapoptotic event (bottom panels). (D) Charts showing the quantification 
of nuclear size (left) and the standard deviation (SD) of the nuclear pixel intensity (right) of apoptotic and nonapoptotic cells (n = 50). Central darker 
lines represent the mean, and gray shades bordered by light- colored lines represent the standard deviation. Nuclear area over time expressed as the 
ratio between areas at Tn and T0. (E) Simplified drawing showing the surgical setup for lymph node and spleen. (F, G) Organs are subsequently imaged 
with intravital two- photon microscopy (IV- 2PM, F), generating 3D timelapses (G). (H) Representative IV- 2PM micrograph and (I) selected crops showing 
GFP- expressing neutrophils (white) undergoing apoptosis. The apoptosis sequence is depicted by raw intensity signal (upper panels) and 3D surface 
reconstruction (bottom panels).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Generation of in vitro and in vivo microscopy data.

Figure 1 continued

Figure 2. ADeS: a pipeline for apoptosis detection. (A) ADeS input consists of single- channel 2D microscopy videos (x,y,t) (B) Each video frame is 
preprocessed to compute the candidate regions of interest (ROI) with a selective search algorithm. (C) Given the coordinates of the ROI at time t, 
ADeS extracts a series of snapshots ranging from t – n to t + n. A deep learning network classifies the sequence either as nonapoptotic (0) or apoptotic 
(1). (D) The predicted apoptotic events are labeled at each frame by a set of bounding boxes that (E) are successively linked in time with a tracking 
algorithm based on Euclidean distance. (F) The readout of ADeS consists of bounding boxes and associated probabilities, which can generate a 
probability map of apoptotic events over the course of the video (left) as well as providing the number of apoptotic events over time (right).

https://doi.org/10.7554/eLife.90502
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first dataset in order of complexity for the training of ADeS (Figure 4). For this reason, we formulated 
the learning problem as a binary classification task that assigned nonapoptotic sequences to the 
class label 0 and apoptotic sequences to the class label 1 (Figure 4—figure supplement 1A). The 
class label 0 included instances of healthy nuclei and nuclei undergoing mitotic division (which can 
resemble apoptotic events).

Successively, to validate the proposed Conv- Transformer architecture for apoptosis classification, 
we compared it with the performances of a convolutional neural network (CNN), a 3DCNN, and 
a convolutional long- short term memory (Conv- LSTM) network. To this end, the four models were 
trained on a dataset containing 13.120 apoptotic and 13.120 nonapoptotic events using a 0.12 valida-
tion split (Table 1). Results show that the frame accuracy of the CNN is low, possibly due to morpho-
logical heterogeneity over consecutive frames, and therefore unsuitable for the task. By contrast, the 
3DCNN and the Conv- LSTM displayed high- sequence accuracy, F1 score, and area under the curve 
(AUC), confirming that the temporal information within frames is pivotal to correctly classifying image 
sequences containing apoptotic cells. Nonetheless, the proposed Conv- Transformer outperformed 
both the 3DCNN and the Conv- LSTM, establishing itself as the final DL architecture at the core of 
ADeS.

Successively, we deployed a preliminary trained network on control movies without apoptotic 
events to collect false positives that we used to populate the class label 0, thus ensuring a systematic 
decrease in the misclassification rate (Figure 4—figure supplement 1B). Using the latter generated 
dataset, we trained the Conv- Transformer for 100 epochs using an unbalanced training set with a 
1:10 ratio of apoptotic to nonapoptotic cells (Figure 4A). After deploying the trained model on 1000 
testing samples, the confusion matrix (Figure  4B) displayed a scant misclassification rate (2.68%), 
similarly distributed between false positives (1.04%) and false negatives (1.64%). Accordingly, the 
receiver- operating characteristic (ROC) of the model skewed to the left (AUC = 0.99, Figure 4C). This 
skew indicates a highly favorable tradeoff between the true positive rate (TPR) and false positive rate 
(FPR), which the overall predictive accuracy of 97.32% previously suggested (Figure 4B). Altogether, 
these metrics suggest an unprecedented accuracy of the DL model in the classification of apoptotic 

Figure 3. Conv- Transformer architecture at the core of ADeS. Abstracted representation of the proposed Conv- Transformer classifier. The input 
sequence of frames is processed with warped convolutional layers, which extract the features of the images. The extracted features are passed into the 
four transformer modules, composed of attention and feedforward blocks. Finally, a multilayer perceptron enables classification between apoptotic and 
non- apoptotic sequences.

https://doi.org/10.7554/eLife.90502
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Figure 4. Training and performance in vitro. (A) Confusion matrix of the trained model at a decision- making threshold of 0.5. (B) Receiver- operating 
characteristic displaying the false positive rate (FPR) (specificity) corresponding to each true positive rate (TPR) (sensitivity). (C). Training accuracy of the 
final model after 100 epochs of training. (D) Representative example of apoptosis detection in a timelapse acquired in vitro (five replicates). (E) Multiple 
detection of nuclei undergoing apoptosis displays high sensitivity in densely packed field of views. (F) Heatmap representation depicting all apoptotic 
events in a movie and the respective probabilities. (G) Bar plots showing the TPR and FPR of ADeS applied to five testing movies, each one depicting an 
average of 98 apoptosis. (H) Time course showing the cumulative sum of ground- truth apoptosis (blue) and correct predictions (red). (I) 2D visualization 
of spatial–temporal coordinates of ground- truth (blue) and predicted apoptosis (red). In the 2D representation, the radius of the circles maps the 
temporal coordinates of the event. (J) Pixel distance between ADeS predictions and the nearest neighbor (NN) of the ground truth (left) in comparison 
with the NN distance obtained from a random distribution (right). The plot depicts all predictions of ADeS, including true positives and false positives. 
(K) Scatterplot of the spatial distance between ground truth and true positives of ADeS. Ground- truth points are centered on the X = 0 and Y = 0 
coordinates. (L) Distribution of the temporal distance (frames) of the correct predictions from the respective ground- truth NN. Statistical comparison 
was performed with Mann–Whitney test. Columns and error bars represent the mean and standard deviation, respectively. Statistical significance is 
expressed as *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Training and performance in vitro.

Figure supplement 2. Effect of noise on ADeS performance.

https://doi.org/10.7554/eLife.90502
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and nonapoptotic sequences. However, they only reflect the theoretical performances of the classifier 
applied to cropped sequences depicting a single cell at a time.

To validate ADeS on full- length microscopy acquisitions, we deployed it on six testing movies that 
were not part of the training set. Each testing movie had been annotated manually and contained 
a variable number of ground- truth apoptosis (98 ± 21) and a comparable cell density (1705 ± 124). 
Moreover, all movies had identical magnification (20×), duration (21 hr), and sampling rate (5 min). In 
order to test ADeS on these movies, we adopted an unbiased approach and we did not hard- tune the 
hyperparameters of the model (see ‘Materials and methods’), specifying only a stringent confidence 
threshold (0.995) and a temporal window based on the average duration of the nuclear hallmarks (nine 
frames). As a result, ADeS could predict the location and timing of the apoptotic nuclei (Figure 4D, 
Video 1), enabling the detection of multiple apoptoses in a densely packed field of view (Figure 4E 
and F). To quantify these performances, we compared the prediction of ADeS to the annotated ground 
truths (x,y,t). By doing this, we found that the average TPR, or sensitivity, was 82.01% (ranging from 77 
to 92%), while the average FPR was 5.95% (Figure 4G). The undetected apoptotic events were likely 
a consequence of the heterogeneity of nuclear fragmentation, which can vastly differ in signal inten-
sity, size, focal plane, and duration (Figure 1—figure supplement 1). Nonetheless, hard- tuning the 
model could further increase the sensitivity without additional training data, such as by adjusting the 
temporal interval or by lowering the confidence threshold. With respect to the false positives, most 

were mitotic cells due to their morphological simi-
larities with apoptotic nuclei. Nevertheless, the 
FPR was contained, translating into a new false 
positive every four frames (or 20  min of acqui-
sition). This rate confirmed that ADeS is overall 
robust, especially in light of movies depicting 
1700 cells per frame.

Concerning the spatial–temporal dynamics, 
the apoptotic count over time highlighted a tight 
relationship between ground- truth apoptosis and 
correct detections of ADeS (Figure 4H). Accord-
ingly, the two curves were divergent but highly 
correlative (Pearson r = 0.998), proving that ADeS 
can successfully capture cell death dynamics. A 
2D scatterplot (x, y, t = radius; Figure 4I) visually 
depicted the spatial–temporal proximity between 
ADeS and the ground truth, indicating overlap 
between the two scatter populations. Nearest 
neighbor (NN) analysis further captured this 

Table 1. Comparison of deep learning architectures for apoptosis classification.
Comparative table reporting accuracy, F1, and AUC metrics for a CNN, 3DCNN, Conv- LSTM, and 
Conv- Transformer. The classification accuracy is reported for static frames or image sequences. The 
last column shows which cell death study employed the same baseline architecture displayed in the 
table.

Classifier architecture Frame accuracy Sequence accuracy F1 AUC Study

CNN 74% ± 1.3 NA 0.77 0.779

La Greca et al., 
2021; Verduijn 
et al., 2021

3DCNN NA 91.22 % ± 0.15 0.91 0.924 -

Conv- LSTM NA 97.42% ± 0.09 0.97 0.994

Kabir et al., 
2022; Mobiny 
et al., 2020

Conv- Transformer NA 98.27% ± 0.25 0.98 0.997 Our

CNN, convolutional neural network; NA, nonapplicable.

Video 1. Prediction of apoptotic events in vitro.

https://elifesciences.org/articles/90502/figures#video1

https://doi.org/10.7554/eLife.90502
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relationship; the average distance between all ADeS predictions (true positives + false positives), and 
the NN in the ground truth was 30 pixels. In contrast, randomly generated predictions had a ground- 
truth NN within a 52- pixel radius (Figure 4J). Considering instead the true positives only, we observed 
that they were in close spatial proximity to the ground truth, with most predictions falling within a 
20- pixel radius (Figure 4K). The difference between the predicted timing of apoptosis and the one 
annotated in the ground truth was also slight, with an average discard of 3.46 frames (Figure 4L). 
Interestingly, ADeS showed a bias toward late detections, which is explained considering that oper-
ators annotated the beginning of the apoptosis, whereas ADeS learned to detect nuclear disruption, 
occurring at the end of the process. Altogether, these quantifications indicate that ADeS detects 
apoptotic nuclei with high spatial and temporal accuracy, establishing a novel comparative baseline 
for this task.

3D rotation of the in vivo dataset
Upon the successful application of ADeS in vitro, the next step in complexity was detecting apoptosis 
in vivo timelapses. The latter is inherently more challenging due to different factors, including high 
background signal, autofluorescence, and the presence of collagen (Pizzagalli et al., 2018), among 
others. For this purpose, we retrained ADeS using the in vivo data described in Figure 1. However, 
one of the main limitations of supervised DL is the need for large datasets, and the finite number 
of MP- IVM acquisitions and apoptotic instances represented a bottleneck for the training of ADeS. 
To overcome this limitation, we implemented a custom data augmentation strategy that exploits 
3D volumetric rotations, as previously performed in other studies (Xu et al., 2020; Zhuang, 2019). 
Accordingly, each 3D apoptotic sequence underwent multiple spatial rotations and was successively 
projected in 2D (Figure 5A). This procedure enabled us to increase the dataset of a 100- fold factor 
without introducing imaging artifacts as each volume rotation was a physiological representation of 
the cell (Figure 5B).

Training and deployment in vivo
To train ADeS using the latter rotated in vivo dataset (Figure 6), we defined a binary classification 
task in which ROIs containing apoptotic cells were assigned to the class label 1. In contrast, all 
remaining ROIs, including healthy cells and background elements, were assigned to the class label 0 

Figure 5. 3D rotation of the in vivo dataset. (A) Depiction of a 3D volume cropped around an apoptotic cell. Each collected apoptotic sequence 
underwent multiple 3D rotation in randomly sampled directions. The rotated 3D images were successively flattened in 2D. (B) Gallery showing the 
result of multiple volume rotations applied to the same apoptotic sequence. The vertical axis depicts the sequence over time, whereas the horizontal 
describes the rotational degree applied to the volumes.

https://doi.org/10.7554/eLife.90502
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Figure 6. Training and performance in vivo. (A) Confusion matrix of the trained model at a decision- making threshold of 0.5. (B) Receiver- operating 
characteristic displaying the false positive rate (FPR) corresponding to each true positive rate (TPR). (C) Training accuracy of the final model trained 
for 200 epochs with data augmentations. (D) Image gallery showing ADeS classification to sequences with different disruption timing. The generated 
heatmap reaches peak activation (red) at the instant of cell disruption. (D) Representative snapshots of a neutrophil undergoing apoptosis. Green 
bounding boxes represents ADeS detection at the moment of cell disruption. (E) Representative micrograph depicting the detection of two eosinophils 
undergoing cell death in the spleen (left) and the respective probability heatmap (right). (F) ADeS performances expressed by means of TPR and FPR 
over a panel of 23 videos. (G) Tracking accuracy metric (TRA) measure distribution of the trajectories predicted by ADeS with respect to the annotated 
ground truth (n = 8) (H) Comparison between human and ADeS by means of TPR and FPR on a panel of five randomly sampled videos. (I) Hierarchical 
clustering of several video parameters producing two main dendrograms (n = 23). The first dendrogram includes videos with reduced sensitivity and is 
enriched in several parameters related to cell density and signal intensity. (J) Graph showing the effect of cell density on the performances expressed in 
terms of TPR and FPR (n = 13). (K) Comparison of the positive predictive value between videos with large and small signal- to- noise ratio (left) and videos 
with large and small shortest cell distance (right). (L, M) Selected video parameters are combined into a quality score that weakly correlates with the TPR 

Figure 6 continued on next page
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(Figure 6—figure supplement 1A). Subsequently, we trained the DL classifier for 200 epochs. Finally, 
we performed fivefold cross- validation according to the ID of the movies (Figure 6A). The resulting 
confusion matrix demonstrated a classification accuracy of 97.80% and a 2.20% misclassification rate 
that is primarily due to type II error (1.80% false negatives) (Figure 6B). Analogous to the tests in vitro, 
classification in vivo proved highly effective in predicting apoptotic and nonapoptotic instances. The 
ROC of the model, which indicated high sensitivity and a low FPR, supported this favorable result 
(Figure 6C).

We then benchmarked ADeS in the detection task performed on a set of 23 MP- IVM acquisi-
tions of immune cells undergoing apoptosis. Unlike in vitro settings, in vivo acquisitions displayed 
high variability in cell number, autofluorescence, signal intensity, and noise levels (Figure 6—figure 
supplement 1B). Still, ADeS correctly predicted the location and timing of cells undergoing apoptosis 
(Figure 6H, Video 2), indicating its robustness to increasingly populated fields of view (Figure 6—
figure supplement 1C). In addition, we successfully applied the pipeline to neutrophils imaged in the 
lymph node (Figure 6D) and eosinophils in the spleen (Figure 6E). By comparing ADeS predictions 
with the annotated ground truths, we found that our pipeline detected apoptotic events with a TPR of 
81.3% and an FPR of 3.65% (Figure 6F). The detections, provided in the form of bounding boxes and 
trajectories, indicated the coordinates and duration of the events. Hence, to measure how close they 
were to the annotated trajectories, we employed the tracking accuracy metric (TRA), a compound 
measure that evaluates the similarities between predicted and ground- truth trajectories. The average 
TRA was above 0.9, indicating the high fidelity of the trajectories predicted by ADeS (Figure 6G).

Next, we compared ADeS to human annotation performed by three operators on five testing 
movies. As a result, ADeS displayed an upward trend of the TPR and a downward trend of the FPR. 
However, we found no significant difference in the TPR and FPR (Figure  6H). Regardless, ADeS 
performances appeared to be distributed across two distinct groups: a predominant group with an 
average sensitivity of 100% (>75% range) and a smaller group with an average sensitivity of 53% 
(41–75% range, Figure 6H). To understand this discrepancy, we applied hierarchical clustering to the 
testing videos according to their imaging properties and biological content (Figure 6I), thus gener-
ating two major dendrograms. The first dendro-
gram mostly contained videos with reduced 

Video 3. Noise affects the performance of ADeS in 
vivo.

https://elifesciences.org/articles/90502/figures#video3

in overall data (M, n = 23) and strongly correlates with the TPR in selected underperforming data (N, n = 8). Statistical comparison was performed with 
Mann–Whitney test. Columns and error bars represent the mean and standard deviation, respectively. Statistical significance is expressed as *p≤0.05, 
**p≤0.01, ***p≤0.001, ****p≤0.0001.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Training and deployment in vivo.

Figure 6 continued

Video 2. Prediction of apoptotic events in vivo.

https://elifesciences.org/articles/90502/figures#video2

https://doi.org/10.7554/eLife.90502
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sensitivity (yellow) and was defined by a high cell number, high noise levels, short cell distance, and a 
saturated and fluctuating image signal. Most notably, the cell number played a crucial role in overall 
performance, as reflected in the fact that an increment of this parameter resulted in a pronounced 
decrease in the TPR and a moderate increase in the FPR (Figure 6J). Incidentally, the positive predic-
tive value (PPV) was significantly lower in videos with poor SNR and, although not statistically signif-
icant, the PPV was lower when the signal standard deviation was higher (Figure 6K, Video 3). As 
similar findings were observed in vitro (Figure 4—figure supplement 2), we hypothesized that the 
quality of a movie predicts ADeS performance. Hence, we combined the parameters highlighted by 
the clustering analysis (Figure 6I) into a single score ranging from 0 to 1 (1 indicating the highest and 
ideal score) and, in doing so, found there to be a weak correlation between the video quality and the 
sensitivity of ADeS (Figure 6L). However, this trend was evident only when we considered videos with 
suboptimal sensitivity; indeed, in these cases, we found a strong correlation (0.72), confirming that the 
video quality partially explains the observed performances (Figure 6M).

Finally, we evaluated how the biological variability in vivo could affect the readout of ADeS, defining 
nine distinct biological categories, including apoptotic cells, healthy cells, and background elements. 
For all biological categories, the classification accuracy was above 80%, except for overlapping cells 
and cells with high membrane plasticity (Figure 6—figure supplement 1D).

Comparison with the state-of-the-art
To compare the performance of ADeS with other state- of- the- art algorithms for cell death quantifica-
tion, we conducted a comprehensive literature review. For each study, we reported the attained clas-
sification accuracy, the experimental setup, the architecture of the classifier, the capability of detecting 
cell death events in movies, and the number of cell deaths in the training set (Table 2). Initial results 
indicate that ADeS achieved the highest classification accuracy, but a direct comparison in terms of 
accuracy is not meaningful due to the differences in datasets, including distinct cell types, different 
types of cell death, and varying dataset sizes. For a more appropriate benchmark, we refer to Table 1, 

Table 2. Comparison of cell death identification studies.
Table reporting all studies on cell death classification based on machine learning. For each study, we 
included the reported classification accuracy, the experimental conditions of the studies, the target 
input of the classifier, and the capability of performing detection on static frames or microscopy 
timelapses. Met conditions are indicated with a green check. Moreover, for each study we reported 
the architecture of the classifier and the number of apoptotic cells in the training set. NA stands for 
not available and indicates that the information is not reported in the study.

Study

Input 
of the 
classifier

Reported 
classification 
accuracy

In 
vitro

In 
vivo

Detection
In frame

Detection 
in movies

Classifier 
architecture

N cell 
death

Our
Frame 
sequence 98.27% ✓ ✓ ✓ ✓ Conv- Transformer 13,120

Jin et al., 2022 Frame 93% ✓ ✘ ✘ ✘ Logistic regression NA

Verduijn et al., 
2021 Frame 87% ✓ ✘ ✘ ✘ VGG- 19 19,339

Kabir et al., 2022
Frame 
sequence 93% ✓ ✘ ✘ ✘ ResNet101- LSTM 3172

La Greca et al., 
2021 Frame 96.58% ✓ ✘ ✘ ✘ ResNet50 11,036

Mobiny et al., 
2020

Frame 
sequence 93.8% ✓ ✘ ✘ ✘ CapsNet- LSTM 41,000

Kranich et al., 
2020 Frame 93.2% ✓ ✘ ✘ ✘ CAE- RandomForest 27,224

Vicar et al., 2020
Frame 
sequence NA ✓ ✘ ✓ ✓ biLSTM 1745

Jimenez- Carretero 
et al., 2018 Frame NA ✓ ✘ ✓ ✘ R- CNN 255,215

https://doi.org/10.7554/eLife.90502
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which shows that our classifier outperformed the baseline reimplementations of the main classifiers 
used in other studies.

From Table 2, we observe that ADeS is the only algorithm for cell death quantification that has been 
applied in vivo. Additionally, only ADeS and the 
study by Vicar et al., 2020 effectively detected 
apoptotic cells in fully uncropped microscopy 
movies, which is a significant achievement given 
the computational challenge associated with the 
task. However, Vicary and colleagues relied on the 
temporal analysis of cell trajectories, while ADeS 
used vision- based methods to directly analyze 
consecutive frames of a movie. As a result, ADeS 
offers a comprehensive and pioneering pipeline 
for effectively applying vision- based classifiers to 
detect cell death in imaging timelapses.

Applications for toxicity assay in 
vitro
A common application of cell death staining is 
the evaluation of the toxicity associated with 
different compounds (Atale et al., 2014; Schmid 
et  al., 2007) or the efficacy of an apoptotic- 
inducing treatment. Here, we show that ADeS has 

Figure 7. Applications for toxicity assay in vitro. (A) Representative snapshots depicting epithelial cells in vitro at 0 and 24 hr after the addition of PBS 
and three increasing doses of doxorubicin, a chemotherapeutic drug and apoptotic inducer (three replicates). (B) Plot showing the number of apoptotic 
cells detected by ADeS over time for each experimental condition. (C, D) Dose–response curves generated from the drug concentrations and the 
respective apoptotic counts at 5 hr and 24 hr post- treatment. Vertical dashed lines indicate the EC50 concentration. (E) Dose–response curve projected 
from the fit obtained in (D). The predicted curve allows to estimate the response at higher drug concentrations than the tested ones.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Applications for toxicity assay in vitro.

Video 4. In vitro detections of apoptotic cells treated 
with PBS for 24h.

https://elifesciences.org/articles/90502/figures#video4

https://doi.org/10.7554/eLife.90502
https://elifesciences.org/articles/90502/figures#video4


 Tools and resources      Computational and Systems Biology | Immunology and Inflammation

Pulfer et al. eLife 2023;12:RP90502. DOI: https://doi.org/10.7554/eLife.90502  14 of 25

analogous purposes and can effectively quantify the toxicity of different compounds in vitro. For this 
application, we grew epithelial cells in vitro, treating them with PBS and three increasing concentra-
tions of doxorubicin, a chemotherapeutic drug that elicits apoptosis in the epithelium (Eom et al., 
2005). Epithelial cells were seeded with the same density of cells per well, and all four conditions 
had the same confluence before the treatment. However, at 24 hr post- acquisition, the number of 
survivor cells was inversely proportional to the doxorubicin concentration (Figure 7A). We confirmed 
this trend using ADeS (Videos 4–7), which measured the lowest mortality after 24 hr in PBS (62 cells), 
followed by doxorubicin concentrations of 1.25  μM (95  cells), 2.50  μM (167  cells), and 5.00  μM 
(289 cells). Moreover, ADeS predicted distinct pharmacodynamics (Figure 7B), which can define the 
drug concentration and experimental duration required to reach a specific effect in the apoptotic 
count. To this end, each time point in Figure 7B also defines a dose–response relationship. Here we 
provide two dose–responses curves at 5 hr and 24 hr post- treatment, showing different pharmacody-
namics (EC50 5 hr = 2.35, Hill slope 5 hr = 3.81, EC50 24 hr = 4.47, Hill slope 24 hr = 1.93, Figure 7C 
and D). Notably, the fit can project the dose–responses for higher drug concentrations, predicting the 
maximum effect size at a given time. For instance, at 24 hr post treatment, a 10 μM titration attains 

86% of the maximum effect (456 apoptotic cells), 
whereas a further increase in the concentration of 
the drug leads only to a moderate increase of the 
toxicity (Figure 7E). We argue that this approach 
helps to maximize the effect of a drug on a desig-
nated target, while minimizing collateral damage 
done to nontarget cells. For instance, in chemo-
therapies employing doxorubicin, apoptosis of 
epithelial cells is an undesired effect. Therefore, 
researchers can select a titration of the drug and a 
duration of the treatment that does not affect the 
epithelium yet still positively affects the tumor. 
Finally, we also demonstrated the reproducibility 
of the toxicity assay by targeting another cell type 
(T cells) treated with a different apoptotic inducer 
(staurosporine, Figure 7—figure supplement 1).

Video 5. In vitro detection of apoptotic cells treated 
with 1.25 μM doxorubicin.

https://elifesciences.org/articles/90502/figures#video5

Video 6. In vitro detection of apoptotic cells treated 
with 2.50 μM doxorubicin.

https://elifesciences.org/articles/90502/figures#video6

Video 7. In vitro detection of apoptotic cells treated 
with 5.00 μM doxorubicin.

https://elifesciences.org/articles/90502/figures#video7

https://doi.org/10.7554/eLife.90502
https://elifesciences.org/articles/90502/figures#video5
https://elifesciences.org/articles/90502/figures#video6
https://elifesciences.org/articles/90502/figures#video7
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Measurement of tissue dynamics in vivo
To test the application of ADeS in an in vivo setting, we applied it to study the response of bystander 
cells following apoptotic events in the lymph nodes of mice treated with an influenza vaccine. We 
computed the spatial and temporal coordinates of a neutrophil undergoing apoptosis (Figure 8A), 
which, combined with the tracks of neighboring cells, allowed us to characterize cellular response 
patterns following the apoptotic event. Among other parameters, we observed a sharp decrease in 
the distance between the neighboring cells and the apoptotic centroid (Figure 8B) in addition to a 
pronounced increase in the instantaneous speed of the cells (Figure 8C).

Successively, we evaluated the detection of apoptotic cells following laser ablation in the spleen 
of an anesthetized mouse (Figure 8D). Previous research has employed this method to study immune 
cell responses to tissue damage (Uderhardt et al., 2019). The insult caused prompt recruitment of 
neutrophils, leading to the formation of a local swarm (Figure 8E, left). After that, the neutrophils 
within the swarm underwent apoptotic body formation in a coordinated manner (Figure 8E, right). To 
quantify this event, we processed the generated timelapse with ADeS, resulting in a probability map 
of apoptotic events throughout the acquisition (x,y,t,p; Figure 8F). Accordingly, the location with the 
highest probability corresponded to the area damaged by the laser, while the visual representation 
of the probability map enabled us to infer the morphology and location of the swarm. This result 
demonstrates the potential application of ADeS in digital pathology, showing how the distribution of 
apoptotic events throughout the tissue can identify areas enriched by cell death events.

Discussion
Automated bio- image analysis obviates the need for manual annotation and avoids bias introduced 
by the researcher. In this regard, recent studies showed the promising usage of DL to classify static 
images (Jimenez- Carretero et al., 2018; Kranich et al., 2020; Verduijn et al., 2021) or timelapses 

Figure 8. Measurement of tissue dynamics in vivo. (A) Intravital two- photon micrographs showing ADeS detection of an apoptotic neutrophil (blue, left) 
and the subsequent recruitment of neighboring cells (right) in the popliteal LN at 19 hr following influenza vaccination. (B) Plot showing the distance 
of recruited neutrophils with respect to the apoptotic coordinates over time (n = 22). (C) Plot showing the instantaneous speed of recruited neutrophils 
over time (n = 22). The dashed vertical lines indicate the instant in which the apoptotic event occurs. Gray area defines the boundaries of maximum and 
minimum values. (D) Schematic drawing showing the intravital surgical setup of a murine spleen after inducing a local laser ablation. (E) Intravital two- 
photon micrographs showing the recruitment of GFP- expressing neutrophils (green) and the formation of a neutrophil cluster (red arrows) at 60 min after 
photo burning induction. (F) Application of ADeS to the generation of a spatiotemporal heatmap indicating the probability of encountering apoptotic 
events in the region affected by the laser damage. The dashed circle indicates a hot spot of apoptotic events.

https://doi.org/10.7554/eLife.90502
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containing single apoptotic cells (Mobiny et al., 2020). However, these approaches are unsuitable for 
microscopy timelapses because they do not address two fundamental questions: the location, over 
the whole field of view, at which an event occurs, and its duration. These questions define a detec-
tion task (Zhao et al., 2019) in space and time, which has a computational cost that can rapidly grow 
with the size and length of a movie. Moreover, live- cell imaging data present specific challenges that 
further increase the difficulty of detection routines, including densely packed fields of view, autofluo-
rescence, and imaging artifacts (Pizzagalli et al., 2018).

Consequently, computational tools to effectively detect apoptotic events in live- cell imaging 
remained unavailable. Thus, we created an apoptosis detection pipeline that could address the 
abovementioned challenges in vitro and in vivo. In this regard, ADeS represents a crucial bridge 
between AR and bioimaging analysis, being the first apoptosis detection routine with demonstrated 
applicability to full microcopy timelapses. In addition, we presented two comprehensive and curated 
datasets encompassing multiple cell types, fluorescent labels, and imaging techniques to encourage 
reproducibility and foster the development of apoptosis detection routines.

In human activity recognition benchmark, 3DCNNs (Vrskova et al., 2022), two- streams networks 
(Ye et al., 2019), and recurrent neural networks (RNNs) (Mohd Noor et al., 2022) have proved to 
score the highest accuracy on most kinetic datasets (Ullah et al., 2021). However, in most studies 
for the classification of apoptosis, authors unanimously employed RNNs such as Conv- LSTMs. This 
choice, although produced valid results, is not necessarily optimal for the task. In this regard, Ullah 
and colleagues highlighted that the performances of different DL architectures are highly dependent 
on the AR dataset (Ullah et al., 2021). Therefore, selecting the most suitable one is only possible after 
an extensive benchmark. In our comparison, we demonstrated for the first time that attention- based 
networks are suitable for the classification and detection of apoptotic events. Accordingly, our Conv- 
Transformer network outperformed DL architectures previously employed in other studies, including 
3DCNNs and RNNs. This result established a landmark in the application of attention- based networks 
in AR for live- cell imaging. Moreover, it suggests the possible benefits of employing transformers for 
the classification of different biological activities other than cell death.

Similar to most diagnostic tools, ADeS displayed a tradeoff between sensitivity (TPR) and speci-
ficity (1 – FPR), which is a known challenge in binary classification (Pang et al., 2022). This tradeoff can 
be attributed to the fact that apoptosis is rare in normal physiological conditions, leading to a high 
degree of class imbalance during training. As a result, the choice of the training set had a significant 
impact on the performances of ADeS. For instance, we highlighted the importance of a training and 
validation set that included challenges related to real live- cell imaging acquisitions, such as overlap-
ping cells and low signal- to- noise samples. Including these challenges instances enabled ADeS to 
attain low misclassification rate and robust real- life performances. Nonetheless, we observed residual 
misclassifications due to shared similarities between healthy and apoptotic cells. For instance, in vitro 
mitotic divisions could mislead the detection of apoptotic nuclei, while in vivo, overlapping cells were 
sometimes mistaken for apoptotic cells. Therefore, to effectively address these challenges, it is crucial 
to implement strategies to increase the representativeness of the dataset, such as integrating multiple 
data sources and data augmentation techniques.

From a biological perspective, ADeS has multiple applications in fundamental and clinical research. 
Among other advantages, it can provide insights into pivotal cell death mechanisms, monitor the 
therapies used to modulate apoptosis in various diseases, and characterize the toxicity of different 
compounds. In this regard, ADeS readout is analogous to standard fluorescent probes for apop-
tosis detection, with the advantage that it can be applied directly to nuclear or cytoplasmic staining 
without the need of additional fluorescent reporters. Therefore, ADeS avoids using any additional 
acquisition channel, which can be used for multiplexing purposes. Moreover, common probes (Atale 
et al., 2014; Kyrylkova et al., 2012; Loo, 2011; Sun et al., 2008; Vermes et al., 1995) flag early 
apoptosis stages, activated up to several minutes before the point at which morphological changes 
in the cell (Green, 2005; Takemoto et al., 2003); meanwhile, these cells can reverse the apoptotic 
process (Geske et al., 2001; Masri and Chandrashekhar, 2008; Tang et al., 2009). By contrast, 
ADeS indicates the exact instant of cell disruption, thus adding specificity to the spatial–temporal 
dimension. For these reasons, we suggest that ADeS can complement the information provided 
by classic apoptotic biomarkers, which will prove advantageous in experimental assays where the 
temporal resolution delivers more information than the sole apoptotic count. Moreover, ADeS can 

https://doi.org/10.7554/eLife.90502
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be usefully applied in processing high- throughput live- cell imaging, minimizing annotation time and 
research bias.

Finally, in tissue dynamics the spatial–temporal activity of cells can reveal connections between 
signaling pathways and the fate decision of individual cells, such as mitosis or apoptosis (Gagliardi 
et al., 2021). These intricate systems can display complex dynamics, which can be better compre-
hended incorporating spatial and temporal coordinates provided by ADeS. Consequently, we propose 
that integrating these spatial–temporal characteristics with experimental observations could lay the 
groundwork for understanding the mechanism governing complex signaling pathways. Furthermore, 
we contend that this information has the potential to facilitate the development of predictive models, 
establishing a correlation between specific cell death dynamics and the underlying stimuli. This, in 
turn, could serve as the foundation for innovative diagnostic tools capable of inferring the cause of 
cell death (Fesik, 2005; Hotchkiss and Nicholson, 2006).

In conclusion, ADeS constitutes a novel solution for apoptosis detection that combines state- of- 
the- art microscopy and DL. Its successful implementation represents a step toward the general appli-
cation of AR methods to live- cell imaging. By bridging these two distinct fields, ADeS leverages 
successfully the benefits of automated routines. Further work could expand the proposed pipeline 
to encompass diverse cell populations, various types of cell death, and potentially broader cellular 
activities.

Materials and methods
MCF10A cell line and image acquisition
The normal- like mammary epithelial MCF10A cells (provided by Joan Brugge; Debnath et al., 2003), 
stably expressing the nuclear marker, were generated as previously described (Gagliardi et  al., 
2021). Briefly, the nuclear marker H2B- miRFP703, provided by Vladislav Verkhusha (Addgene plasmid 
#80001) (Shcherbakova et al., 2016), was subcloned in the PiggyBac plasmid pPBbSr2- MCS. After 
cotransfection with the transposase plasmid (Yusa et al., 2011), cells were selected with 5 µg/ml Blas-
ticidin and subcloned. For time- lapse imaging, the cells were seeded on 5 µg/ml fibronectin (PanReac 
AppliChem)- coated 1.5 glass- bottom 24- well plates (Cellvis) at 1 × 105 cells/well density. After 48 hr, 
when the optical density was reached, the confluent cell monolayer was acquired every 1 or 5 min 
for several hours with a Nikon Eclipse Ti inverted epifluorescence microscope with 640 nm LED light 
source, ET705/72m emission filter, and a Plan Apo air 203 (NA 0.8) or a Plan Apo air 403 (NA 0.9) 
objectives. The collection of biological experiments used in this study includes different stimulation of 
apoptosis, such as growth factors, serum starvation, and doxorubicin at various concentrations.

Apoptosis induction of MCF10A cells with doxorubicin
Normal- like mammary epithelial MCF10A cells were grown in 24- well glass coated with fibronectin 
with a seeding of 1 × 105 cells/well. After 2 d, cells were starved for 3 hr and treated with doxorubicin 
at 1.25, 2.50, and 5.00 μM concentrations.

Mice
Prior to imaging, LysM- cre- GFP mice were anesthetized with a cocktail of ketamine (100 mg/kg) and 
xylazine (10 mg/kg) as previously described (Sumen et al., 2004). All animals (females between 6 and 
12 mo) were maintained in specific pathogen- free facilities at the Institute for Research in Biomedi-
cine (Bellinzona, CH). All experimental procedures were performed according to the regulations of 
the local authorities and approved by the Swiss Federal Veterinary Office (licensing national number 
39015).

Intravital two-photon microscopy
Surgery in the popliteal lymph node was performed as previously reported (Miller et al., 2004). The 
exposed organs were imaged on a custom up- right two- photon microscope (TrimScope, LaVision 
BioTec). Probe excitation and tissue second- harmonic generation were achieved with two Ti:sapphire 
lasers (Chamaleon Ultra I, Chamaleon Ultra II, Coherent) and an optical oscillator that emits in the 
1010–1340 nm range (Chamaleon Compact OPO, Coherent) and has an output wavelength between 
690 and 1080 nm.

https://doi.org/10.7554/eLife.90502
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Neutrophil isolation from mouse bone marrow
Bone marrow samples were extracted via flushing with PBS from the long bones of UBC- GFP mice 
(https://www.jax.org/strain/004353). Then, the bone marrow was filtered through a 40 um strainer 
and resuspended in PBS. Primary bone marrow neutrophils were isolated with Ficoll gradient and 
resuspended in PBS.

T-cell culture in a 3D collagen matrix
Human CD4+ T cells were isolated from the PBMC fraction of healthy donors obtained from NetCAD 
(Canadian Blood Services). Cell purity was above 95%. Naïve CD4+ T cells were activated by adding 
Dynabeads coated with anti- human CD3e/CD28 antibody (1:1 bead:cell ratio, Life Technologies, Cat# 
11131D) in RPMI1640 supplemented with 10% FBS (VWR Seradigm, Cat# 1500- 500), 2 mM GlutaMAX 
(Gibco, Cat# 3050- 061), 1 mM sodium pyruvate (Corning, Cat# 25- 000CI), and 10 mM HEPES (Sigma- 
Aldrich, Cat# H4034). After 2 d, beads were removed and cells were cultured for another 4–6 d in a 
medium containing 50 IU/ml human rIL- 2 (Biotechne, Cat# 202- IL- 500), keeping cell density at 2 × 
105 cells/ml. Cells were used for all experiments between days 6–8. All work with human blood has 
been approved by the University of Manitoba Biomedical Research Ethics Board (BREB).

Apoptosis live-cell imaging of T cells in 3D collagen chambers
T cells were labeled at days 6–8 using CMAC (10 µM) cell tracker dye (Invitrogen), and glass slide 
chambers were constructed as previously described (Lopez et al., 2019; Lopez et al., 2022). Briefly, 
2 × 106 cells were mixed in 270 µl of bovine collagen (Advanced Biomatrix, Cat# 5005- 100ML) at a 
final concentration of 1.7 mg/ml. Collagen chambers were solidified for 45 min at 37°C/5% CO2 and 
placed onto a custom- made heating platform attached to a temperature control apparatus (Werner 
Instruments). For the induction of apoptosis, 1  µM of staurosporine (Sigma, Cat# 569397- 100UG) 
and 800 ng of TNF- a (BioLegend, Cat# 570104) in 100 µl RPMI were added on top of the solidified 
collagen. Cells were imaged as soon as the addition of apoptosis inducers using a multiphoton micro-
scope with a Ti:sapphire laser (Coherent), tuned to 800 nm for optimized excitation of CMAC. Stacks 
of 13 optical sections (512 × 512 pixels) with 4 mm z- spacing were acquired every 15 s to provide 
imaging volumes of 44 mm in depth (with a total time of 60–120 min). Emitted light was detected 
through 460/50 nm, 525/70 nm, and 595/50 nm dichroic filters with non- descanned detectors. All 
images were acquired using the 20 × 1.0 N.A. Olympus objective lens (XLUMPLFLN; 2.0 mm WD).

Data processing and image analysis
The raw video data, composed by uint8 or uint16 TIFFs, were stored as HDF5 files. No video prepro-
cessing was applied to the raw data before image analysis. Cell detection, tracking, and volumetric 
reconstruction of microscopy videos were performed using Imaris (Oxford Instruments, v9.7.2). The 
resulting data were further analyzed with custom MATLAB and Python scripts (see ‘Code availability’ 
section).

Apoptosis annotation of epithelial MCf10A cells in vitro
We manually annotated apoptotic events of MCF10A cells by visual inspection of the movies. The 
annotation was done by observing the morphological changes associated with apoptosis (e.g., nuclear 
shrinkage, chromatin condensation, epithelial extrusion, nuclear fragmentation) across multiple 
consecutive frames. Using a custom Fiji (Schindelin et al., 2012) macro, we automatically stored x 
and y centroids of the apoptotic nucleus. The time t of each apoptotic annotation was defined as the 
beginning of nuclear shrinkage.

Generation of thein vitro training dataset
The 16- bit raw movies were min- max scaled to the 0.001 and 0.999 quantiles and downsampled 
to 8- bit resolution. Using the database of manually labeled coordinates of apoptotic events (x,y,t), 
we extracted crops with 59 × 59 pixels resolution (2× scaling for the FOV acquired with the 20× 
objective). Seven time steps of the same location were extracted, with linear spacing from –10 min 
to +50 min relative to the apoptosis annotation. This time frame was chosen to capture the cell before 
the onset of apoptosis, and the morphological changes associated with apoptosis (nuclear shrinkage, 
decay into apoptotic bodies, extrusion from epithelium). The resulting image cube has dimensions 
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of 59 × 59 × 7. To create the training data for the nonapoptotic class, we excluded areas with an 
annotated apoptotic event with a safety margin from the movies. From the remaining regions without 
apoptoses, we extracted image cubes from cells detected with StarDist (Fazeli et al., 2020) and from 
random locations. The random crops also included debris, apoptotic bodies from earlier apoptotic 
events, empty regions, and out- of- focus nuclei.

Apoptosis annotation of leukocyte cells in vivo
Three operators independently annotated the videos based on selected morphological criteria. To 
label apoptotic cells, the annotators considered only the sequences of cells that displayed membrane 
blebbing followed by apoptotic bodies formation and cell disruption (Figure 2B). For each frame 
in the apoptotic sequence, the operators placed a centroid at the center of the cell with the Imaris 
‘Spots’ function, generating an apoptotic track. Successively, ground- truth tracks were generated 
according to a majority voting system, and 3D volume reconstruction was performed on ground- truth 
cells using the Imaris ‘Surface’ function. Nearby nonapoptotic cells were also tracked. In addition, 
other nonapoptotic events were automatically subsampled from regions without apoptotic cells.

3D rotation of the in vivo annotations
In vivo annotations presented a class unbalance in favor of nonapoptotic cells, with a relative few 
apoptotic instances. Hence, to compensate for this bias, we produced several representations of the 
raw data by interpolating the raw image stacks in 3D volumes and rotating them in randomly sampled 
directions, with rotational degrees between 0° and 45°. After each manipulation, the rotated volume 
underwent flattening by maximum projection and symmetric padding to preserve the original dimen-
sion. The 2D images were successively resized and cropped to match the 59 × 59 pixels input of the 
classifier. Finally, the training sequences were saved as uint8 grayscale TIFF files.

Generation of the in vitro and in vivo training datasets
To detect apoptotic cells in microscopy acquisitions, we defined a 2D binary classification task in which 
apoptotic events are labeled with class 1, while nonapoptotic events belonged to the class label 0. 
The resulting unprocessed data consisted of frame sequences composed of 3D crops. The content of 
the class label 0 in vitro included healthy nuclei, background, cell debris, and mitotic cells. The content 
of the class label 0 in vivo included motile cells, arrested cells, highly deformed cells, overlapping cells, 
cell debris or blebs, empty background, noisy background, and collagen.

Data augmentation and data loader
Given the varying length of the training sequences contained in the TIFFs, upon training, we used 
a custom data loader that uniformly samples the input data and produces sequences with a fixed 
number of frames. The fixed number of frames was set to 5, corresponding to the frame length of the 
shortest apoptotic sequence. During training, each sample underwent horizontal shift, vertical shift, 
zoom magnification, rotation, and flipping. All data augmentations were performed in Python using 
the Keras library.

Deep learning architecture
As a deep learning classifier, we employed a custom architecture relying on time- distributed convolu-
tional layers stacked on top of a transformer module (Conv- Transformer). The input size consists of five 
single- channel images with 59 × 59 pixel size. The convolutional network has three layers of size 64, 
128, and 256 length. Each layer has a 3 × 3 kernel, followed by Relu activation, batch normalization, 
and a dropout set to 0.3. The inclusion of padding preserves the dimension of the input, while 2D max 
pooling is at the end of each convolutional block. After 2D max pooling, the output is passed to a 
transformer module counting six attention heads, and successively to a fully connected decision layer. 
The fully connected network has four layers with 1024, 512,128, and 64 nodes, each one followed by 
Relu activation and a 0.3 dropout layer. The last layer is a softmax activation, which predicts a decision 
between the two classes.

Training and hyperparameters
Our model was trained in TensorFlow with Adam optimizer using binary cross- entropy loss and an 
initial learning rate of 0.0001. The optimal mini- batch size was 32, and the number of training epochs 
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was 200. In training mode, we set a checkpoint to save the model with the best accuracy on the vali-
dation dataset, and a checkpoint for early stopping with patience set to 15 epochs. In addition, the 
learning rate decreased when attending a plateau.

ADeS deployment
For the deployment of the classifier on microscopy videos, we generative region proposals using the 
selective search algorithm, obtaining a set of ROIs for each candidate frame of the input movie. For 
each ROI computed by the region proposal at time t, a temporal sequence is cropped around t and 
classified with the Conv- Transformer. The resulting bounding boxes are filtered according to a prob-
ability threshold and processed with the non- maxima suppression utils from Pytorch. Consecutive 
bounding boxes classified as apoptotic are connected using a custom multiobject tracking algorithm 
based on Euclidean distance. The generated trajectories are filtered by discarding those with less than 
two objects.

Default and user-defined parameters
ROIs detected with the region proposal are filtered according to their size, discarding the ones 
with edges below 20 pixels and above 40 pixels. Furthermore, a threshold on intensity is applied to 
exclude uint8 patches with an average brightness below 40. Upon classification, a temporal window 
corresponding to the expected duration of the apoptotic event is set by the user (nine frames by 
default). This temporal window is subsampled to match the number of input frame of the classifier 
(five). The filtering of the predictions depends on a user- specified threshold, which by default corre-
sponds to 0.95 in vivo and 0.995 in vitro. Non- maxima suppression is based on the overlapping area 
between bounding boxes, set to 0.1 by default. The centroid tracking has the following adjustable 
parameters: gap and distance threshold. The ‘gap’ parameter, set to three frames, specifies for how 
long a centroid can disappear without being attributed a new ID upon reappearance. A threshold on 
the distance, set by default to 10 pixels, allows the connection of centroids within the specified radius. 
All the reported quantifications had default parameters.

Statistical analyses
Statistical comparisons and plotting were performed using GraphPad Prism 8 (GraphPad, La Jolla, 
USA). All statistical tests were performed using nonparametric Kruskal–Wallis test or Mann–Whitney 
test For significance, p value is represented as *p<0.05, **p<0.005, and ***p<0.0005.
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